“而三角形的三个角的角度都算出来,假定地月距离为单位一,那么地日距离、月日距离也能算出来,然后、然后.”
卓老头的眼神开始变得有些茫然。
勾股定理,只能把三个边和三个角给导出来,后面没路了啊!
“然后怎么算?”
姜星火提醒道:“根据地球直径,来算月亮直径,进而推导太阳直径。”
“如何算?”
姜星火又在地面上开始画画了,他一边画一边说道:“勾股定理算出来了地球、月亮、太阳三者的距离比例(假设地月距离为1单位)和角度,那么可以用等比例放大,来推算太阳直径。”
地球—月亮—太阳
画完,姜星火解释起了原理。
“因为三者一条线的时候,也就是日全食的时候,月亮能几乎完美挡住太阳。”
“那么从地球上看,太阳、月亮的大小基本相同,也就说明从地球看月亮和看太阳的视角是一样的所以,既然勾股定理知道了太阳到地球的距离大约是月亮到地球的距离的几倍,那么也就能等比例推测出,太阳直径是月亮直径的几倍,用很基础的相似三角形的比例关系就可以算出来。”
内容未完,下一页继续阅读